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Numerical Analysis of Subharmonic Mixers
Using Accurate and Approximate Models

ROSS G. HICKS, sTUDENT MEMBER, AND PETER J. KHAN, SENIOR MEMBER, IEEE

Abstract —A full nonlinear numerical analysis technique is applied to
subharmonically pumped mixer circuits where the two diodes are not
identical. Results indicate that a slight imbalance in the diode parasitic
parameters can significantly affect the mixer performance. A bilinear
approximation of the Schottky-barrier diode characteristic is described,
permitting accurate determination of the conversion loss peaks for millime-
ter-wave subharmonically pumped mixers. This approximation provides an
analysis which requires significantly less computer time than a full nonlin-
ear analysis.

I. INTRODUCTION

N RECENT years, there have been significant advances

in the design theory of Schottky-diode mixers, associated
with the removal of the restrictive assumption that the
local oscillator has sinusoidal voltage or current. A variety
of numerical methods [1]-{6] have been used for the non-
linear analysis of mixer circuits, with the study of Held and
Kerr [7], based on the approach of Gwarek [2], being
particularly significant.

Attention has also been directed to the subharmonically
pumped balanced mixer, as it has several intrinsic ad-
vantages, particularly at millimeter-wave frequencies. The
symmetry of the balanced mixer ensures that down-con-
- verted AM noise from the local oscillator is cancelled at
the intermediate-frequency terminals. Operation with the
local oscillator near half the signal frequency is cost effi-
cient at millimeter wavelengths, where the cost of pump
power increases rapidly with frequency. Kerr [8] has pre-
sented a detailed analysis of these mixers for the case
where the two diodes are assumed to be identical. In
practice, it has not been possible to reproduce the theoreti-
cal results readily under experimental conditions, although
some encouraging experimental results have been reported
[9]-[12]. Researchers have found that both slight changes
in diode mounting and replacement of diodes have had a
pronounced effect on performance [13].

This paper reports on the development of an accurate
numerical method for the nonlinear analysis of balanced
subharmonically pumped mixers, for the important practi-
cal case where the two diodes differ, either in device
characteristics or in mounting configurations. In addition,
the paper presents an approximate approach based on a
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bilinear diode model, which requires much less computa-
tional effort and yields results of sufficient accuracy for
many design purposes. The bilinear model is applied to
both equal-diode and unequal-diode circuits, and the re-
sults of a comparative study between the bilinear model
and the nonlinear analysis method are presented.

The approach of Kerr [8] can be applied but with
difficulty to the unsymmetrical subharmonically pumped
mixer diode case, since in its form described in [8], it relies
on the circuit symmetry to reduce the multidiode circuit to
an equivalent single-diode circuit which may be readily
analyzed by the techniques available in the literature. A
generalization of the Kerr multiple reflection algorithm [4]
to the general multidiode situation has been reported re-
cently by Faber and Gwarek [14]. This method has not
been used here as performance figures [5] based on the
single-diode counterparts of the two-diode analysis meth-
ods available indicate the method described here has sig-
nificant advantages of efficiency over the Faber and
Gwarek approach.

Although the numerical approach described in this paper
is efficient, it shares with the approaches of Kerr [8] and
Faber and Gwarek [14] the requirement of substantial
amounts of computer time for the following reasons: 1) the
large number of calculations involved in the numerical
integration of the nonlinear differential equations repre-
senting the junction varactor capacitance and the
Schottky-barrier junction; and 2) the number of iterations
required to ensure the linear embedding circuit constraints
at the pump frequency and its harmonics are satisfied.

Because of the computational effort required for this
nonlinear analysis, attention has also been directed to the
accuracy attainable using simplified bilinear diode models.
Barber [15] first proposed such a model for the single-diode
mixer, with the mixer properties being chiefly determined
by the pulse duty ratio of the switch. Bordonskiy ez al. [16]
expanded on Barber’s switch model by extending the num-
ber of sidebands under consideration together with making
an allowance for broad-band nonzero terminating imped-
ances at both the image and sum frequencies. Both Barber
and Bordonskiy commented on the diode cutoff frequency
as being a parameter of fundamental importance in that it
sets the upper frequency limit of performance for the
parallel RC junction device. Zabyshnyi et al. [17] extended
the work of Bordonskiy to the case of subharmonic mixers,
using the assumption of identical diodes. However, the
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approach of Zabyshnyi fails to account for the crucial
effect of the parasitic lead inductance, which at resonance
induces multiple conductions in each voltage waveform [8].
The analysis, however, did emphasize the importance of
the diode cutoff frequency in determining mixer perfor-
mance.

II. MULTIDIODE UPDATE NONLINEAR ANALYSIS
APPROACH

The approach [18] described here is based upon an
extension of a single-diode nonlinear analysis technique
previously published [5], [6] by the present authors. It is
based upon subdivision of the circuit into three subnet-
works, comprising two nonlinear one-ports and a connect-
ing linear two-port containing the embedding network
within which the pump source is located, as shown in
Fig. 1.

’the two-port network will be described at each harmonic
of the pump frequency, using Z parameters, as follows:

Vi(o)=—-2Z(0)[[(0)+Z,(w)L(w)+V7(e) (1)
=V3(0) = = Zy (@) [)(0)+ Zp(w) L(w) =V (0) (2)
where V7°(w) = voltage at port 1 with both ports 1 and 2
open-circuited and represents the component due to the
exciting source; Vy°(w) = voltage at port 2 with both ports
1 and 2 open-circuited and again represents the component

attributable to the exciting source. For a symmetrical re-
ciprocal embedding network

le("-’) = Zzl(‘*’)
Z“(w) = Zzz(‘*’)
Vi(w) = —17(w).

The procedure then goes as follows.

1) To commence the algorithm, sinusoidal waveforms are
assumed for I7(¢) and Vy(r), where the superscript indi-
cates this is the initial iteration. These values are taken at
the excitation frequency, without harmonics, and may be
found by an approximate calculation. Each iteration will
seek to improve the values of 1,(¢) and V,(¢).

2) The periodic voltage response V{(r) that diode 1
produces in response to the input I7(z) may be determined
by successively integrating (using the classical Runge-Kutta
algorithm) the nonlinear Schottky-diode equation until the
transients decay, i.e.,

avi(r) _ I(6)—iyfexp (¥ (2)/nkT )~ 1]
dt C(Ve(r))

where the capacitance term is calculated using the normal
varactor equation, i.e.,

C(V(0) =Cu(1-V(2)/9) 7

(3)
(4)
()

(6)

(7)
where

Cy zero bias capacitance for diode 1
v doping profile index
¢ contact potential
i, diode 1 saturation current, and
1 diode ideality factor.
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Fig. 1. Subdivision of the subharmonic mixer circuit into the two non-
linear diodes and the linear embedding network. The pump source is
contained within the embedding network.

Typically, 64 points are considered in the integration com-
putation, allowing consideration of harmonics in V{(7) up
to the eighth order with a minimal truncation error in the
Runge-Kutta algorithm.

3) Using the assumed waveforms for I7(¢) and V7 (1),
together with the calculated waveform of V/(¢), as given
by (6), enables the fourth variable of the two-port network
to be calculated. This variable, I7(z), the current flowing
into the linear network, may be calculated using the known
Z parameters of the two-port as follows:

Vz(w)—ZZI(w)II(w)—VZ”C(w)
_Zzz(w) )

The above linear embedding network calculations are most
efficiently done in the frequency domain. The fast Fourier
transform is used to convert between the frequency and the
time domain.

4) With I3(t) available, a revised voltage V3(¢) at port 2
may be calculated in the same manner as for diode 1
(revised voltages are indicated by a superscript *)

dvs (1) _ L(1)=ip[exp (g3 (s)/mkT)—1]
dt G(7*(1))

L(w)= (8)

)
where

G(13(1)=Cu(1-V3(1)/9) " (10)

where
Cy  zero bias capacitance for diode 2
v doping profile index
¢ contact potential
i, diode 2 saturation current, and
n diode ideality factor.

5) Similarly, a revised I¥(w) may be calculated in the
frequency domain since Vj(w), I5(w), and V{(w) are
known quantities as is the embedding network information

Vl(‘*’)_le(“’)Iz(w)—Vf)c(w)
_Zn(“’) . (11)

6) It remains now to specify how the new estimates of
voltage V,'(¢) and I}(¢) are determined at the beginning of
the next iteration and thereafter for each successive itera-
tion. Two convergence parameters p, and p,, one for each
diode, are introduced. The range of values of these parame-
ters is restricted to 0 < p < 1. Values of p may be permitted
to become complex [6] but experience has shown there is
little advantage over using real p values. Determination of
their values is based on criteria derived from a detailed
convergence analysis to be given in the Appendix. These
parameters are used to provide the next iteration of I,(t)

In("-’)=
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and V,(¢), namely I}(¢) and V,(¢), i.e.,

I(8) = p ¥ (D) + (1= p) 17 (1) (12)
V(1) = p 3 () + (1= )17 (1) (13)

7) One iteration of the loop has now been completed,
giving revised values of the periodic waveforms /,(¢) and
V,(t) for the next iteration cycle which begins at step 2.
Iterations proceed until stationary solutions are achieved
for these waveforms. The resulting computer program re-
quired 10K words of 32-bit VAX 11 /780 memory.

The Appendix details the convergence mechanism of the
above iteration algorithm. None of the available two-diode
methods previously reported in the literature have yet
provided a detailed convergence assessment to assist the
user by providing prior information on the likelihood of
convergence. It is clear that for the purposes of efficient
automated nonlinear computation, the analysis algorithm
and convergence mechanism should be thoroughly under-
stood. The analysis in the Appendix produces a matrix for
which convergence is assured if each and every element of
that matrix is small. Control over the size of these matrix
elements is provided by the use of the convergence parame-
ters p, and p,.

It is clear that this technique may be readily extended to
the case of more than two diodes.

III. SMALL SIGNAL AND NOISE ANALYSIS

The small signal analysis used follows that of Kerr [8],

with the mixing elements being a parallel combination of
the diode varactor capacitance and Schottky-barrier con-
ductance. The Fourier coefficients of the capacitance and
conductance waveforms permit the construction of the
small-signal conversion matrix for each diode. An overall
mixer admittance matrix may then be formed using the two
diode conversion matrices plus the diagonal matrix repre-
senting the embedding admittance network and external
load admittances. This combined overall system matrix
permits the calculation of the output IF impedance and the
conversion loss. As eight harmonics of the local oscillator
were determined by the nonlinear analysis, this permits
four upper and lower sidebands to be considered in addi-
tion to the intermediate or output frequency.

The noise analysis comprises two components: the ther-
mal noise emanating from both the diode series resistance,
and the embedding network is determined using the theory
of Twiss [19]; the shot noise contribution of the two diodes
is calculated using Dragone’s [20] noise correlation theory.
Using these two components together with the superposi-
tion principle, the input noise temperature is calculated
directly in an identical manner to that done by Kerr [8].

IV. APPLICATION OF THE DUAL D10ODE UPDATE
ANALYSIS

Studies were carried out on the subharmonically pumped
mixer circuit examined by Kerr, given as example 1 in his
paper [8]. This circuit presents a short-circuit coupling
between the two diodes at frequencies above the signal
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Fig. 2. The variation of mixer conversion properties with diode 2 lead
inductance: (a) conversion loss, (b) input noise temperature, (c) real
part of the IF-output impedance, (d) diode 2 bias current. Diode 1
parameters are: R, =108, C,=7.0 fF, L, =04 nH, n=1.12, ¢ = 0.95
V. y=05, 1g=8x10717" A, 1y, =2 mA. Diode 2 parameters are
identical to those of diode 1 but with the lead inductance and bias
current allowed to vary.
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Fig. 3. The variation of muixer conversion properties with diode 2 zero-
bias capacitance: (a) conversion loss, (b) input noise temperature, (c)
real part of the IF-output impedance, (d) diode 2 bias current. Diode 1
parameters are identical to those given in Fig. 2. Diode 2 parameters
are identical to those of diode 1 but with the zero-bias capacitance and
bias current allowed to vary.

frequency. At other frequencies, the load in parallel with
the diodes is 50 £. In the unperturbed (or equal diode
case), the diode parameters used were: R, =10 Q, C; = 7.0
fF, L,=04nH,7=1.12,¢$=095V, y=0.5,and i, =8X
1077 A. The signal, pump, and IF are at 103, 50, and 3
GHz. The convergence parameters p, and p, were both set
at 0.5 for these studies. Subsequently, both the lead induc-
tance and zero-bias capacitance values of diode 2 were
allowed to vary, yielding the effects shown in Figs. 2 and 3.
In all cases, the LO power was adjusted to give a constant
rectified current of 2 mA in diode 1. When the capacitance
was varied, the series resistance of diode 2 was modified
such that the C,R product remained constant. In both
Figs. 2 and 3, the rectified current of diode 2 is plotted in
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Fig. 4. Waveforms for the two diodes: (a) junction voltage, (b) diode
current. Diode 2 parameters are L, = 0.325 nH, C, = 7.0 fF. Diode 2 is
in the resonant condition. Diode 1 parameters are L, = 04 nH, Cy=7.0
fF.

addition to the mixer performance figures of conversion
loss, input noise temperature, and IF output impedance.
Typical current and voltage waveforms showing the phe-
nomenon of double conduction [8] in diode 2 are given in
Fig. 4.

1t is clear from an examination of Figs. 2 and 3 that as
in the identical diode situation analyzed by Kerr [8], vari-
ations in the lead inductance and zero bias capacitance in
only one of the two diodes have significant effects on the
overall performance of the mixer. A resonance between the
lead inductance and junction capacitance of diode 2 is
responsible for the poor conversion losses depicted in Figs.
2 and 3, with the resonant {requency being in the vicinity
of the signal frequency. An examination of the current
waveforms in Fig. 4 illustrates this point further. The
resonant conditions of diode 2 are evident in the second
negative current excursion; it is the increased second
harmonic content which reduces the coupling of the IF
current to the external IF load.

Compensation for the poor conversion losses may be
achieved by addition of a separate dc bias supply for diode
2, as shown in Fig. 5. In this case, the bias voltage is
adjusted until the rectified currents of both diodes (2 mA)
are equal. The resulting conversion-loss diagram shows the
absence of the resonant peak. In this case, the shift in the
bias point on the varactor capacitance curve to a larger
value of capacitance with the addition of the dc voltage
tends to offset the fall in the inductance, and the resonant
frequency is kept below the signal frequency.

Alternatively, when the diodes are mounted in wave-
guide, compensation for the variation in inductance and
capacitance may be obtained readily by adjustment of the
gap height. The coupled high-order TE and TM modes
provide a variable reactive shunt across the gap terminals
[21]. Adjustment of the gap height gives a range of com-
pensatory reactance values for use in adjusting the diode
current values for equality.

An interesting feature in both Figs. 2 and 3 is the
sensitivity of the rectified current in diode 2 to the diode
parameter imbalance. This has also been found experimen-
tally, particularly in the millimeter-wave region [22]. This
sharp variation in current is due to the proximity of the
lead inductance-junction capacitance resonance to the
fundamental pump frequency. In this situation, an increase
in lead inductance tunes out a portion of the junction
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Fig. 5. The variation of mixer conversion properties with diode 2 lead
inductance: (a) conversion loss, (b) input noise temperature, (c) real
part of the IF output impedance, (d) diode 2 bias voltage. Diode 1
parameters are identical to those given in Fig. 2. Diode 2 parameters
are 1dentical to those of diode 1 but with lead inductance and bias
voltage allowed to vary, thereby fixing the bias current of diode 2 at 2
mA.

capacitance seen at the pump frequency and thereby re-
sults in an increase in the dc-rectified current.

V. BILINEAR MODEL

The analysis of a millimeter-wave subharmonic mixer,
using a bilinear model which incorporates all the important
parasitic elements, involves two steps, a large-signal analy-
sis followed by small-signal calculations [23].

The large signal analysis is carried out using the sim-
plified model, shown in Fig. 6, for each diode in the
anti-parallel pair. In this model, C is taken to be the
zero-bias capacitance value, and the turn-on voltage is
taken to be equal to the dc bias voltage which gives rise to
the required dc bias current. The pump source is assumed
to be ideal and have zero internal source impedance. Two
linear analyses are required for each of the two states of
the switch. The switch is closed for the period during which
the diode voltage across C, is greater than or equal to
Viun.on- Clearly, at each change of the state of the bipolar
switch, the two initial conditions comprising the capaci-
tance charge together with the lead inductance flux must
be determined. It is possible due to resonances and ringing
to obtain multiple conductions per cycle. In this case, care
must be taken to ensure this phenomenon is correctly
characterized in the calculations. For each case, the con-
duction angle and pump voltage amplitude are required
following specification of the dc bias current; in practice, a
rapid iteration gives the required pump voltage value to
provide the specified bias current.

The small-signal analysis involves determination of the
conductance and capacitance waveforms, from which
harmonic components are readily found by Fourier analy-
sis. This analysis is carried out with the diode model shown
in Fig. 7, which differs from that of Fig. 6 in provision of
elements C, and R, when diode conduction is occurring
and the switch is closed. R, is the diode conductance and

J
the sum of C, and C, is the diode capacitance for the
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Vturn-on

Fig. 6. Bilinear model of the mixer diode to be used in the approximate
large signal nonlinear analysis. R is the series resistance, L is the lead
inductance, C, is the zero-bias capacitance, V. o, i the forward bias
turn-on voltage @ is the conduction angle of the switch. Two of these
diodes are connected in antiparallel to form a subharmonic mixer.

Cp

Fig. 7. Equivalent circuit of the diode used in the small signal analyss.
This circuit features both a switched capacitance and a switched
conductance. C; is the zero-bias capacitance, R, is the diode conduc-
tance, and C, +C2 the diode capacitance for the specified de-bias
current,

specified dc bias current value; both are found using the
exact diode /-V and C-V relations. C; now denotes
the zero-bias capacitance. Using this model, together with
the switch duty ratio found from the large signal bilinear
model analysis, conductance and capacitance waveforms
are readily found and a small-signal conversion matrix
constructed for each diode.

An overall mixer admittance matrix may then be formed
using the two diode conversion matrices plus the diagonal
matrix representing the embedding admittance network
and external load admittances. This combined overall sys-
tem matrix enables calculation of the output IF impedance,
conversion loss, and the input signal impedance. As in the
analysis in Section III, four upper and lower s1debands
were considered.

The noise analysis proceeds in two steps. Firstly, the
thermal noise emanating from the diode series resistances
and the embedding network is determined using the theory
of Twiss [19]. The shot-noise contribution of the two
diodes, each represented as an ideal switch, may be de-
termined using the following theorem presented by Kerr
[8]. A two-diode mixer, using ideal exponential diodes
mounted in a lossless circuit, has essentially the same
output noise as a lossy multiport network maintained at a
temperature n7/2, where T is the physical temperature of
the diodes and 7 is their ideality factor. From the total
noise power delivered to the IF load admittance, the previ-
ously calculated conversion loss enables the input SSB
noise temperature to be determined. For the switched
bilinear model presented in this paper, it is assumed that
the switch in the model contributes an amount of shot
noise equivalent to that of the ideal exponent1a1 diode
analyzed by Kerr in his theorem.

The resulting computer program required 7K words of
32-bit VAX 11 /780 memory.

V1. APPLICATION OF THE BILINEAR MODEL

Comparative studies were carried out on the subharmon-
ically pumped mixer of Kerr, the circuit analyzed in Sec-
tion IV using the dual-diode update nonlinear analysis.
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Fig. 8. Comparison of: (a) calculated conversion loss, (b) IF output
impedance and (¢) input noise temperature values given by the full
nonlinear analysis reported by Kerr {8] and the bilinear model de-
scribed in this paper. Identical diodes were used. Pump frequency = 50
GHz, signal frequency = 103 GHz, IF frequency = 3 GHz, bias current
=2mA,R;=10Q,C =70 fF

Fig. 8 shows the variation of mixer performance with lead
inductance, the diode lead inductances being constrained
to be equal. The exact analysis results [8] are shown for
comparison.

It is clear that the peaks given by the analysis of Kerr [8]
are also predicted by the simplified bilinear model. This
applies to all three properties of the mixer, namely conver-
sion loss, IF-output impedance, and the input-signal noise
temperature. However, it is equally apparent that there is a
systematic horizontal displacement of the conversion peaks.
Elementary LC resonance calculations using the zero-bias
capacitance (based on resonance at the second pump
harmonic) predict the largest conversion loss peak to occur
at 0.36 nH in Fig. 8. As the average pumped capacitance is
higher than the zero bias capacitance, it is to be expected
that the full nonlinear analysis of Kerr [8] will shift the
peak to a smaller value of inductance than 0.36 nH. The
bilinear model analysis will naturally shift the peaks to a
still further smaller value of inductance as the forward
conduction region is effectively modelled as an infinite
capacitance (short circuit), thus further increasing the aver-
age capacitance.

As may be expected, the bilinear model predicts sharper
resonances than that given by Kerr [8], who used a full
nonlinear analysis. This is a consequence of the absence of
any diode-junction resistance in the perfect switch which
was used in the diode bilinear model. On the other hand,
the exponential Schottky-barrier equation inherently adds
resistance to the circuit of the more comprehensive model,
thereby providing damping to the LC resonant behavior of
the circuit.
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Fig. 9. Conversion loss versus diode 2 lead inductance for 2 different
unequal diode situations: (a) diode 1 lead inductance = 0.30 nH, (b)
diode 1 lead inductance = 0.25 nH. Other diode parameters (for both
diodes) are: R, =10 @, C,="7.0 fF. Diode 1 bias current = 2.0 mA.
Note in (b) the conversion loss is always high as diode 1 is resonant at
the signal frequency.
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Fig. 10. Typical voltage and current waveforms calculated by the bilin-
ear model where the phenomenon of multiple conduction 1s occurring.
Bias current =2 mA, R, =10 €, ;=70 {F, L, =0.25 nH. The two
diodes are identical in this case.

The unequal diode results given in Fig. 9 reinforce the
observations made in Section IV where the full nonlinear
analyses were used. Diode 2 in Fig. 9(a) is in a nonresonant
condition, and the subharmonic mixer performance de-
teriorates only when the lead inductance of diode 1 ap-
proaches 0.27 nH and the resonance at the signal frequency.
On the other hand, the lead inductance of diode 2 in Fig.
9(b) is such that it produces an LC resonance at the signal
frequency and thus the subharmonic mixer provides a poor
response (12-dB loss) which deteriorates still further as
diode 1 approaches resonant conditions. It is thus clear
that, should one diode be at a resonant condition, the totat
mixer performance will suffer, irrespective of the condition
of the other diode.

Finally, Fig. 10 depicts typical calculated voltage and
current waveforms (using the bilinear model) for the case
of double conduction leading to a conversion loss peak.
The shape of these waveforms is virtually identical to those
given in Fig. 4, which are calculated by the full update
nonlinear analysis approach.

VII

This paper has presented a full dual-diode nonlinear
analysis iteration technique whose convergence properties
have been investigated. The dual-diode nonlinear analysis
method requires a significant amount of computer time

CONCLUSIONS
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but enables the diodes to be fully characterized by their
Schottky-barrier equations together with their nonlinear
varactor capacitances. This technique has been applied to a
study of a subharmonically pumped mixer with a view to
establishing its performance with nonidentical diodes pre-
sent. The study demonstrated the importance of the lead
inductance-junction capacitance resonance which, if pres-
ent in either one or both diodes, will cause a large conver-
sion loss. This work complements the “identical diode”
subharmonic mixer work reported by Kerr [8].

More rapid subharmonic mixer performance calculations
may be achieved by using the bilinear model approach
described in this paper. This model retains only the most
significant features of the more comprehensive equivalent
circuit used in the full analysis, yet still enables reasonably
accurate mixer performance calculations to be made.

APPENDIX
CONVERGENCE ANALYSIS

The convergence mechanism of the approach described
above is investigated through a determination of the rate of
error decrease per iteration cycle. Because of the two
nonlinearities present, two error rates need to be moni-
tored. Convergence to a stable solution imposes the con-
straint that both error magnitudes approach zero with
increasing iteration number.

Let the nth harmonics of the correct solutions at the two
interfaces be denoted by If° and V5o. After m iterations

=17+ 67, (A1)
o =Von t Z’_%Lazwz (A2)
where 87 and 87 are the respective error terms, and ZJ' is
the impedance of diode 2 presented at the nth harmonic
pump frequency.
The next iteration cycle would proceed as follows:
Vin=Z{, (A3)

where Z[F is the impedance of diode 1 presented at the
nth harmonic pump frequency.
Using the embedding network information

Vir—Z, It —Vy©
I 2»;11 — 2n 21%1n 2 . ( A 4)
—Zy
The nonlinearity due to diode 2 then requires
V3, =205,
I, may then be calculated as follows:
Vin—Z, I —Vre
| (43)
11

The succeeding iterates, denoted with the superscript
(m + 1), are given by

I{ZH =P11fn+(1_P1)1x’:‘z
ZOH e + Z0 0 — Zyp I — VY
_Zn

+(1-p) (I, +87,)

=P

(A6)
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where
m | Von+ 230850 — Z I — Zyy It — 25,87, — V3¢
I2n - -7 .
22
(A7)
Using the definitions of V3. and If5, the following

simplifications can be made:

_ —7NL :
I =I5+ [p | =2 5::2“:22‘222‘)+(15p1)8;7,
—_ Z ZNL
| 2B o
=J® +§n+! ‘ (A9)
where 6"‘“ is defined by (A8) and (A9). Similarly
vyt =yye 4+ ZMgm (A10)
where
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The cross coupling of the errors given by (A8)-(All)
gives rise to a matrix formulation, i.e.,

8mtl= MM (A12)

where

the error vector 8" = ( (A13)

m
81n
m
2n

and the four elements of the matrix M, are defined by
(A®)-(A11). :

For convergence, a norm of M,,, denoted || M, ||, must be
less than unity [24]. The norm of a matrix quantifies its
magnifying power when used in vector multiplication; a
small matrix norm is guaranteed by having small matrix
elements. For the mixer circuits analyzed here, the lead
inductances of the diodes ensure large values for Z;; and
Z,,, which in turn keeps the size of the matrix elements
down. In addition, the convergence parameters provide
some flexibility.
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Aspects of the Calibration of a Single
Six-Port Using a Load and Offset
Reflection Standards

G. P. RIBLET, MEMBER, IEEE, AND E. R, BERTIL HANSSON

Abstract —In this contribution some aspects of the calibration of a single
six-port using a load and offset reflection standards are discussed. The
applicability of the methods developed is demonstrated by the successful
calibration of several six-ports including one consisting of a directional
coupler plus a symmetrical five-port junction.

I. INTRODUCTION

LTHOUGH THE THEORY for the calibration of

six-ports using the dual six-port method is well
developed at this time [1], the calibration of these devices
using offset reflection standards is attractive, particularly
in a typical laboratory environment. Problems with the
latter are a) the absence of simple closed form expressions
for the calibration constants [2] and b) insight into what
standards to choose to optimize the calibration over a
given frequency interval. This contribution attempts to
remedy this situation. A third problem of much practical
significance relates to the transferability of the calibration.
It is shown how the calibration constants can be normal-
ized in such a way that a six-port can be recalibrated with a
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good load on the output without the need to go through
a full calibration procedure whenever the device is used in
a different experimental configuration.

II. CHOICE OF OFFSET STANDARDS

If P, is the power measured by the reference detector
and P,,i=1,2,3 the powers measured by the other three
detectors attached to the six-port (see Fig. 1), then the
power ratios P, /Py can be written

o Yi1+2X,.|ru1cos(¢x,_+<1>u)+X,»2|1“u|2
/PR = 142Z|T,|cos (¢, + ¢,)+ Z*|T,|?
i=1,2,3 (1)

where |I',| is the magnitude and ¢, the phase of the
reflection coefficient to be measured [3]. The other quanti-
ties are calibration constants of the six-port, The term
Y i=1,2,3 can be determined from a measurement of a
very good load or a sliding load on the output. If the
reference coupler has infinite directivity and the six-port is
perfectly matched, then Z will be zero and only terms in
the numerator will appear. In general, these conditions will’
be approximately fulfilled so that Z wiil be small and the
denominator will be close to one. Let us assume that Z, ¢,
are known (a procedure is given in the next section for
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