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Numerical Analysis of Subharmonic Mixers
Using Accurate and Approximate Models

ROSS G. HICKS, STUDENT MEMBER, AND PETER J. KHAN, SENIOR MEMBER, IEEE

,Ostracf —A full nonlinear numerical analysis technique is applied to
subharmonically pumped mixer circuits where the two diodes are not

identical. Results indicate that a slight imbalance in the diode parasitic

parameters can significantly affect the mixer performance. A bilinear

approximation of the Schottky-barrier diode characteristic is described,

permitting accurate determination of the conversion loss peaks for millime-

ter-wave subharmonicafly pumped mixers. This approximation provides an

anatysis which requires significantly less computer time than a full nonlin-

ear anafysis.

I. INTRODUCTION

I N RECENT years, there have been significant advances

in the design theory of Schottky-diode mixers, associated

with the removal of the restrictive assumption that the

local oscillator has sinusoidal voltage or current. A variety

of numerical methods [ 1]–[6] have been used for the non-

linear analysis of mixer circuits, with the study of Held and

Kerr [7], based on the approach of Gwarek [2], being

particularly significant.

Attention has also been directed to the subharmonically

pumped balanced mixer, as it has several intrinsic ad-

vantages, particularly at millimeter-wave frequencies. The

symmetry of the balanced mixer ensures that down-con-

verted AM noise from the local oscillator is cancelled at

the intermediate-frequency terminals. Operation with the

local oscillator near half the signal frequency is cost effi-

cient at millimeter wavelengths, where the cost of pump

power increases rapidly with frequency. Kerr [8] has pre-

sented a detailed analysis of these mixers for the case

where the two diodes are assumed to be identical. In

practice, it has not been possible to reproduce the theoreti-

cal results readily under experimental conditions, although

some encouraging experimental results have been reported

[9]-[12]. Researchers have found that both slight changes

in diode mounting and replacement of diodes have had a

pronounced effect on performance [13].

This paper reports on the development of an accurate

numerical metliod for the nonlinear analysis of balanced

subharmonically pumped mixers, for the important practi-

cal case where the two diodes differ, either in device

characteristics or in mounting configurations. In addition,

the paper presents an approximate approach based on a
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bilinear diode model, which requires much less computa-,.
tlonal effort and yields results of sufficient accuracy for

many design purposes. The bilinear model is applied to

both equal-diode and unequal-diode circuits, and the re-

sults of a comparative study between the bilinear model

and the nonlinear analysis method are presented.

The approach of Kerr [8] can be applied but with

difficulty to the unsymmetrical subharmonically pumped

mixer diode case, since in its form described in [8], it relies

on the circuit symmetry to reduce the multidiode circuit to

an equivalent single-diode circuit which may be readily

analyzed by the techniques available in the literature. A

generalization of the Kerr multiple reflection algorithm [4]

to the general multidiode situation has been reported re-

cently by Faber and Gwarek [14]. This method has not

been used here as performance figures [5] based on the

single-diode counterparts of the two-diode analysis meth-

ods available indicate the method described here has sig-

nificant advantages of efficiency over the Faber and

Gwarek approach.

Although the numerical approach described in this paper

is efficient, it shares with the approaches of Kerr [8] and

Faber and Gwarek [14] the requirement of substantial

amounts of computer time for the following reasons: 1) the

large number of calculations involved in the numerical

integration of the nonlinear differential equations repre-

senting the junction varactor capacitance and the

Schottky-barrier junction; and 2) the number of iterations

required to ensure the linear embedding circuit constraints

at the pump frequency and its harmonics are satisfied.

Because of the computational effort required for this

nonlinear analysis, attention has also been directed to the

accuracy attainable using simplified bilinear diode models.

Barber [15] first proposed such a model for the single-diode

mixer, with the mixer properties being chiefly determined

by the pulse duty ratio of the switch. Bordonskiy et al. [16]

expanded on Barber’s switch model by extending the num-

ber of sidebands under consideration together with making

an allowance for broad-band nonzero terminating imped-

ances at both the image and sum frequencies. Both Barber

and Bordonskiy commented on the diode cutoff frequency

as being a parameter of fundamental importance in that it

sets the upper frequency limit of performance for the
parallel RC junction device. Zabyshnyi et al. [17] extended

the work of Bordonskiy to the case of subharmonic mixers,

using the assumption of identical diodes. However, the
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approach of Zabyshnyi fails to account for the crucial

effect of the parasitic lead inductance, which at resonance

induces multiple conduction in each voltage waveform [8].

The analysis, however, did emphasize the importance of

the diode cutoff frequency in determining mixer perfor-

mance.

11. MULTIDIODE UPDATE NONLINEAR ANALYSIS

APPROACH

The approach [18] described here is based upon an

extension of a single-diode nonlinear analysis technique

previously published [5], [6] by the present authors. It is

based upon subdivision of the circuit into three subnet-

works, comprising two nonlinear one-ports and a connect-

ing linear two-port containing the embedding network

within which the pump source is located, as shown in

Fig. 1.

The two-port network will be described at each harmonic

of the pump frequency, using Z parameters, as follows:

v,(u)= –z*,(@)l,(u)+ %(~) L(@)+ J?c(@) (1)

–v,(u) = –z2, (ti)I,(u)+ z22(@)12(Cd- v; ’(Cd) (2)

where V:c( a ) = voltage at port 1 with both ports 1 and 2

open-circuited and represents the component due to the

exciting source; V~c( ti ) = voltage at port 2 with both ports

1 and 2 open-circuited and again represents the component

attributable to the exciting source. For a symmetrical re-

ciprocal embedding network

2,2(0)=221(6)) (3)

Z,, (GJ)=Z22(U) (4)

V;=(@) =–v;’(@). (5)

The procedure then goes as follows.

1) To commence the algorithm, sinusoidal waveforms are

assumed for 1:( t) and V;(t), where the superscript indi-

cates this is the initial iteration. These values are taken at

the excitation frequency, without harmonics, and may be

found by an approximate calculation. Each iteration will

seek to improve the values of 11(t) and V2(t).
2) The periodic voltage response Vf(t) that diode 1

produces in response to the input l:(t) maybe determined

by successively integrating (using the classical Runge-Kutta

algorithm) the nonlinear Schottky-diode equation until the

transients decay, i.e.,

dV:(t) _ l:(t) -i, [exp(qV/(t)/qkT) -1] (6)

dt – C,(?q’(t))

where the capacitance term is calculated using the normal

varactor equation, i.e.,

c,(v, (t))= co,(l– v,(t)/@)-’ (7)

zero bias capacitance for diode 1

doping profile index

contact potential

diode 1 saturation current, and

diode ideality factor.

IJl

v,(t)
# t

[21 ?“++
D1OOE*$ EMBEDDING NETWORK DIODE * 2

Fig. 1. Subdivision of the subharmonic mixer circuit into the two non-

linear diodes and the linear embedding network. The pump source is

contained within the embedding network.

Typically, 64 points are considered in the integration com-

putation, allowing consideration of harmonics in V:(r) up

to the eighth order with a minimal truncation error in the

Runge–Kutta algorithm.

3) Using the assumed waveforms for If(t)and Vj(t),

together with the calculated waveform of V~( t),as given

by (6), enables the fourth variable of the two-port network

to be calculated. This variable, I;(t),the current flowing

into the linear network, may be calculated using the known

Z parameters of the two-port as follows:

12((4))=
v2(ci))-z2, (a))I,(@) -v’y(@)

– 222(0)
(8)

The above linear embedding network calculations are most

efficiently done in the frequency domain. The fast Fourier

transform is used to convert between the frequency and the

time domain.

4) With 1~(~) available, a revised voltage V;(1) at port 2

may be calculated in the same manner as for diode 1

(revised voltages are indicated by a superscript “)

d~(t) = I,(t) –i2[exp (qlZ:(t)/qkT)-1]

dt
c2(~*(f))

(9)

where

c2(~*(t)) =co2(l– Jq*(t)/c#)-’ (lo)

where

c 02

:

i2

‘n

5) Similarly,

zero bias capacitance for diode 2

doping profile index

contact potential

diode 2 saturation current, and

diode ideality factor.

a revised 17(~) may be calculated in the

frequency domain since V;(co), lj(~), and Vf( O) are

known quantities as is the embedding network information

I,(u)=
v,(@) –z,2(@)12(@)– v:’(@)

–z,,(u)
. (11)

6) It remains now to specify how the new estimates of

voltage V;(t) and 1/( t) are determined at the beginning of

the next iteration and thereafter for each successive itera-

tion. Two convergence parameters p ~ and pz, one for each

diode, are introduced. The range of values of these parame-

ters is restricted to O < p <1. Values of p may be permitted

to become complex [6] but experience has shown there is

little advantage over using real p values. Determination of

their values is based on criteria derived from a detailed

convergence analysis to be given in the Appendix. These

parameters are used to provide the next iteration of 11(t)
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and Vz(t), namely l;(t) and V;(t), i.e., 15
I 1

l;(t) =p,I:(l)+ (l–pl)I;(t) (12)

~’(t) =p,~(t)+ (l–p, )v;(t). (13)

7) One iteration of the loop has now been completed,

giving revised values of the periodic waveforms I,(t) and

Vz(t) for the next iteration cycle which begins at step 2.

Iterations proceed until stationary solutions are achieved

for these waveforms. The resulting computer program re-

quired 10K words of 32-bit VAX 11/780 memory.

The Appendix details the convergence mechanism of the

above iteration algorithm. None of the available two-diode

methods previously reported in the literature have yet

provided a detailed convergence assessment to assist the

user by providing prior information on the likelihood of

convergence. It is clear that for the purposes of efficient

automated nonlinear computation, the analysis algorithm

and convergence mechanism should be thoroughly under-

stood. The analysis in the Appendix produces a matrix for

which convergence is assured if each and every element of

that matrix is small. Control over the size of these matrix

elements is provided by the use of the convergence parrtme-

ters p, and Pz.

It is clear that this technique maybe readily extended to

the case of more than two diodes.

III. SMALL SIGNAL AND NOISE ANALYSIS

The small signal analysis used follows that of Kerr [8],

with the mixing elements being a parallel combination of

the diode varactor capacitance and Schottky-barrier con-

ductance. The Fourier coefficients of the capacitance and

conductance waveforms permit the construction of the

small-signal conversion matrix for each diode. An overall

mixer admittance matrix may then be formed using the two

diode conversion matrices plus the diagonal matrix repre-

senting the embedding admittance network and external

load admittances. This combined overall system matrix

permits the calculation of the output IF impedance and the

conversion loss. As eight harmonics of the local oscillator

were determined by the nonlinear analysis, this permits

four upper and lower sidebands to be considered in addi-

tion to the intermediate or output frequency.

The noise analysis comprises two components: the ther-

mal noise emanating from both the diode series resistance,

and the embedding network is determined using the theory

of Twiss [19]; the shot noise contribution of the two diodes

is calculated using Dragone’s [20] noise correlation theory.

Using these two components together with the superposi-

tion principle, the input noise temperature is calculated

directly in an identical manner to that done by Kerr [8].

(a) (c)

,LL——L—— LJ” H)

(b) (d)

Fig. 2, The variation of mixer conversion properties wrth diode 2 lead

inductance: (a) conversion loss, (b) input noise temperature, (c) real

part of the IF-output impedance, (d) diode 2 bias current. Diode I

parameters are: R,= 10 Q, CO= 7.0 fF, L, = 0.4 nH, q = 1.12, @= 0.95

V, y= O.5, ZO=8X10- ‘ 7 A ~b,~~= 2 mA. Diode 2 parameters are
identicrd to those of diode 1 but with the lead inductance and bias

current allowed to vary.
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71g. 3. The variation of mixer conversion properties with diode 2 zero-
blas capacitance: (a) conversion loss, (b) input noise temperature, (c)
real part of the IF-output impedance, (d) diode 2 bias current. Diode I

parameters are identical to those given in Fig. 2. Diode 2 parameters

are identicaf to those of diode I but with the zero-bias capacitance and
bias current aflowed to vary.

frequency. At other frequencies, the load in parallel with

the diodes is 50 L?. In the unperturbed (or equal diode

case), the diode parameters used were: R, =10 Q, CO= 7.0

fF, L,=O.4 nH, q=l.12, 4=0.95 V, y= O.5, and io =8x

10-17 A. The signal, pump, and IF are at 103, 50, and 3

GHz. The convergence parameters p ~ and pz were both set

at 0.5 for these studies. Subsequently, both the lead induc-

tance and zero-bias capacitance values of diode 2 were
IV. APPLICATION OF THE DUAL DIODE UPDATE

allowed to vary, yielding the effects shown in Figs. 2 and 3.
ANALYSIS In all cases, the LO power was adjusted to give a constant

Studies were carried out on the subharmonically pumped rectified current of 2 mA in diode 1. When the capacitance

mixer circuit examined by Kerr, given as example 1 in his was varied, the series resistance of diode 2 was modified

paper [8]. This circuit presents a short-circuit coupling such that the COR. product remained constant. In both

between the two diodes at frequencies above the signal Figs. 2 and 3, the rectified current of diode 2 is plotted in
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Fig. 4. Waveforms for the two diodes: (a) junction voltage, (b) diode

current. Diode 2 parameters are L, = 0.325 nH, CO= 7.0 fF. Diode 2 is
in the resonant condition. Diode 1 parameters are L. = 04 nH, CO = 7.0

fF.

addition to the mixer performance figures of conversion

loss, input noise temperature, and IF output impedance.

Typical current and voltage waveforms showing the phe-

nomenon of double conduction [8] in diode 2 are given in

Fig. 4.

It is clear from an examination of Figs. 2 and 3 that as

in the identical diode situation analyzed by Kerr [8], vari-

ations in the lead inductance and zero bias capacitance in

only one of the two diodes have significant effects on the

overall performance of the mixer. A resonance between the

lead inductance and junction capacitance of diode 2 is

responsible for the poor conversion losses depicted in Figs.

2 and 3, with the resonant frequency being in the vicinity

of the signal frequency. An examination of the current

waveforms in Fig. 4 illustrates this point further. The

resonant conditions of diode 2 are evident in the second

negative current excursion; it is the increased second

harmonic content which reduces the coupling of the IF

current to the external IF load.

Compensation for the poor conversion losses may be

achieved by addition of a separate dc bias supply for diode

2, as shown in Fig. 5. In this case, the bias voltage is

adjusted until the rectified currents of both diodes (2 mA)

are equal. The resulting conversion-loss diagram shows the

absence of the resonant peak. In this case, the shift in the

bias point on the varactor capacitance curve to a larger

value of capacitance with the addition of the dc voltage

tends to offset the fall in the inductance, and the resonant

frequency is kept below the signal frequency.

Alternatively, when the diodes are mounted in wave-

guide, compensation for the variation in inductance and

capacitance may be obtained readily by adjustment of the

gap height. The coupled high-order TE and TM modes
provide a variable reactive shunt across the gap terminals

[21]. Adjustment of the gap height gives a range of com-

pensatory reactance values for use in adjusting the diode

current values for equality.

An interesting feature in both Figs. 2 and 3 is the

sensitivity of the rectified current in diode 2 to the diode

parameter imbalance. This has also been found experimen-

tally, particularly in the millimeter-wave region [22]. This

sharp variation in current is due to the proximity of the

lead inductance-junction capacitance resonance to the

fundamental pump frequency. In this situation, an increase

in lead inductance tunes out a portion of the junction
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Fig. 5. The variation of mixer conversion properties with diode 2 lead
inductance: (a) conversion loss, (b) input noise temperature, (c) rerd
part of the IF output impedance, (d) diode 2 bias voltage. Diode 1
parameters are identical to those given in Fig. 2. Diode 2 parameters
are ldentlcaf to those of diode 1 but with lead inductance and bias
voltage allowed to vary, thereby fixing the bias current of diode 2 at 2
mA.

capacitance seen at the pump frequency and thereby re-

sults in an increase in the de-rectified current.

V. BILINEAR MODEL

The analysis of a millimeter-wave subharmonic mixer,

using a bilinear model which incorporates all the important

parasitic elements, involves two steps, a large-signal analy-

sis followed by small-signal calculations [23].

The large signal analysis is carried out using the sim-

plified model, shown in Fig. 6, for each diode in the

anti-parallel pair. In this model, C, is taken to be the

zero-bias capacitance value, and the turn-on voltage is

taken to be equal to the dc bias voltage which gives rise to

the required dc bias current. The pump source is assumed

to be ideal and have zero internal source impedance. Two

linear analyses are required for each of the two states of

the switch. The switch is closed for the period during which

the diode voltage across C, is greater than or equal to

,U~.On. Clearly, at each change of the state of the bipolarv
switch, the two initial conditions comprising the capaci-

tance charge together with the lead inductance flux must

be determined. It is possible due to resonances and ringing

to obtain multiple conduction per cycle. In this case, care

must be taken to ensure this phenomenon is correctly

characterized in the calculations. For each case, the con-

duction angle and pump voltage amplitude are required

following specification of the dc bias current; in practice, a

rapid iteration gives the required pump voltage value to

provide the specified bias current.

The small-signal analysis involves determination of the

conductance and capacitance waveforms, from which

harmonic components are readily found by Fourier analy-

sis. This analysis is carried out with the diode model shown

in Fig. 7, which differs from that of Fig. 6 in provision of

elements Clz and R] when diode conduction is occurring
and the switch is closed. R] is the diode conductance and

the sum of CJ1 and Clz is the diode capacitance for the
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‘, h ‘--L
q’--+

W.m-m

Fig. 6. Bilinear model of the mixer diode to be used in the approximate

large signal nonlinear analysis. R, is the seriesresistance, L, is the lead
inductance, C, is the zero-bias capacitance, Vtu,n.On is the forward bias

turn-on voltage, O is the conduction rmgte of the switch. Two of these
diodes are connected in antiparaflel to form a subharmonic mixer.

*.-q+

e ‘)

Fig. 7. Equivalent circuit of the diode used in the small signal analysls.
This circuit features both a switched capacitance and a switched

conductance. C,l is the zero-bias capacitance, R, is the diode conduc-

tance, and CJ1+ C,z the diode capacitance for the specified de-bias

current.

specified dc bias current value; both are found using the

exact diode 1– V and C – V relations. Cjl now denotes

the zero-bias capacitance. Using this model, together with

the switch duty ratio found from the large signal bilinear

model analysis, conductance and capacitance waveforms

are readily found and a small-signal conversion matrix

constructed for each diode.

An overall mixer admittance matrix may then be formed

using the two diode conversion matrices plus the diagonal

matrix representing the embedding admittance network

and external load admittances. This combined overall sys-

tem matrix enables calculation of the output IF impedance,

conversion loss, and the input signal impedance. As in the

analysis in Section III, four upper and lower sidebands

were considered.

The noise analysis proceeds in two steps. Firstly, the

thermal noise emanating from the diode series resistances

and the embedding network is determined using the theory

of Twiss [19]. The shot-noise contribution of the two

diodes, each represented as an ideal switch, may be de-

termined using the following theorem presented by Kerr

[8]. A two-diode mixer, using ideal exponential diodes

mounted in a lossless circuit, has essentially the same

output noise as a lossy multiport network maintained at a

temperature qT/2, where T is the physical temperature of

the diodes and q is their ideality factor. From the total

noise power delivered to the IF load admittance, the previ-

ously calculated conversion loss enables the input SSB

noise temperature to be determined. For the switched

bilinear model presented in this paper, it is assumed that

the switch in the model contributes an amount of shot

noise equivalent to that ‘of the ideal exponential diode

analyzed by Kerr in his theorem.
The resulting computer program required 7K words of

32-bit VAX 11/780 memory.

VI. APPLICATION OF THE BILINEAR MODEL

Comparative studies were carried out on the subharmon-

ically pumped mixer of Kerr, the circuit analyzed in Sec-

tion IV using the dual-diode update nonlinear analysis.

oo~,
L, (“H)

(b)

, L—..—.
0 01 0.2 03 OA 05 06 07

L. (“HI

(c)

Fig. 8, Comparison of: (a) calculated conversion loss, (b) IF output

impedance and (c) input noise temperature values given by the full
nonlinear anafysis reported by Kerr [8] and the bilinear model de-

scribed in this paper. Identical diodes were used. Pump frequency = 50

GHz, signal frequency= 103 GHz, IF frequency= 3 GHz, bias current
=2mA, R,=lOL!, <=7.OfF.

Fig. 8 shows the variation of mixer performance with lead

inductance, the diode lead inductances being constrained

to be equal. The exact analysis results [8] are shown for

comparison.

It is clear that the peaks given by the analysis of Kerr [8]

are also predicted by the simplified bilinear model. This

applies to all three properties of the mixer, namely conver-

sion loss, IF-output impedance, and the input-signal noise

temperature. However, it is equally apparent that there is a

systematic horizontal displacement of the conversion peaks.

Elementary LC resonance calculations using the zero-bias

capacitance (based on resonance at the second pump

harmonic) predict the largest conversion loss peak to occur

at 0.36 nH in Fig. 8. As the average pumped capacitance is

higher than the zero bias capacitance, it is to be expected

that the full nonlinear analysis of Kerr [8] will shift the

peak to a smaller value of inductance than 0.36 nH. The

bilinear model analysis will naturally shift the peaks to a

still further smaller value of inductance as the forward

conduction region is effectively modelled as an infinite

capacitance (short circuit), thus further increasing the aver-

age capacitance.

As may be expected, the bilinear model predicts sharper

resonances than that given by Kerr [8], who used a full
nonlineax analysis. This is a consequence of the absence of

any diode-junction resistance in the perfect switch which

was used in the diode bilinear model. On the other hand,

the exponential Schottky-barrier equation inherently adds

resistance to the circuit of the more comprehensive model,

thereby providing damping to the LC resonant behavior of

the circuit.
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I’LL
25 17 29 31 33 35

L, [“H)

i“:k
20 22 2A 26 28 30

L, [“H]

(b)

Fig. 9, Conversion loss versus diode 2 lead inductance for 2 different

unequat diode situations: (a) diode 1 lead inductance= 0.30 nH, (b)

diode I lead inductance= 0.25 nH. Other diode parameters (for both
diodes) are: R.= 10 !2, CO= 7.0 fF. Diode 1 bias current= 2.0 rnA.
Note in (b) the conversion loss is always high as diode 1 is resonant at
the signal frequency.

Fig. 10. Typical voltage and current waveforms calculated by the bilin-
ear model where the phenomenon of multiple conduction N occurring.
Bias current = 2 mA, R,= 10 Q, C, = 7.0 fF, L, = 0.25 nH. The two

diodes are identical in this case.

The unequal diode results given in Fig. 9 reinforce the

observations made in Section IV where the full nonlinear

analyses were used. Diode 2 in Fig. 9(a) is in a nonresonant

condition, and the subharmonic mixer performance de-

teriorates only when the lead inductance of diode 1 ap-

proaches 0.27 nH and the resonance at the signal frequency.

On the other hand, the lead inductance of diode 2 in Fig.

9(b) is such that it produces an LC resonance at the signal

frequency and thus the subharmonic mixer provides a poor

response ( 12-dB loss) which deteriorates still further as

diode 1 approaches resonant conditions. It is thus clear

that, should one diode be at a resonant condition, the total

mixer performance will suffer, irrespective of the condition

of the other diode.
Finally, Fig. 10 depicts typical calculated voltage and

current waveforms (using the bilinear model) for the case

of double conduction leading to a conversion loss peak.

The shape of these waveforms is virtually identical to those

given in Fig. 4, which are calculated by the full update

nonlinear analysis approach.

VII. CONCLUSIONS

This paper has presented a full dual-diode nonlinear

analysis iteration technique whose convergence properties

have been investigated. The dual-diode nonlinear analysis

method requires a significant amount of computer time

but enables the diodes to be fully characterized by their

Schottky-barrier equations together with their nonlinear

varactor capacitances. This technique has been applied to a

study of a subharmonically pumped mixer with a view to

establishing its performance with nonidentical diodes pre-

sent. The study demonstrated the importance of the lead

inductance–junction capacitance resonance which, if pres-

ent in either one or both diodes, will cause a large conver-

sion loss. This work complements the “identical diode”

subharmonic mixer work reported by Kerr [8].

More rapid subharmonic mixer performance calculations

may be achieved by using the bilinear model approach

described in this paper. This model retains only the most

significant features of the more comprehensive equivalent

circuit used in the full analysis, yet still enables reasonably

accurate mixer performance calculations to be made.

APPENDIX

CONVERGENCE ANALYSIS

The convergence mechanism of the approach described

above is investigated through a determination of the rate of

error decrease per iteration cycle. Because of the two

nonlinearities present, two error rates need to be moni-

tored. Convergence to a stable solution imposes the con-

straint that both error magnitudes approach zero with

increasing iteration number.

Let the n th harmonics of the correct solutions at the two

interfaces be denoted by lfi and V2~. After m iterations

1,: = 1: + bmIn (Al)

V2;= V2:+ zNL13m2n 2n (A2)

where 8 ~ and ST. are the respective error terms, and Z~.L is

the impedance of diode 2 presented at the n th harmonic

pump frequency.

The next iteration cycle would proceed as follows:

v: = zy~,~ (A3)

where Z~ is the impedance of diode 1 presented at the

n th harmonic pump frequency.

Using the embedding network information

V2:– 22,1: – V;c
I; =

– Z22 “

The nonlinearity due to diode 2 then requires

V;. = Z;:I~ .

It. may then be calculated as follows:

(A4)

(AS)

The succeeding iterates, denoted with the superscript

(m+ 1), are given by

~;+ ’= Pl%+(l-Pl)~R

+(l–p, )( I; +8;) (A6)
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where

V2n -I- Z~nL8& – Z2,1: – Z2,1: – Z218~ – V;c
1~ =

– Z22

(A7)

Using the definitions of J$’ and I:, the following

simplifications can be made:

(–z~Lz22+ Z12Z2,
I;+ ’=1:+ p,

)
+(1–PI) M

+PGET ‘
(A8)

=1; +8:+’ (A9)

where 8;+’ is defined by (A8) and (A9). Similarly

V2; + 1 = J72:+ zfnL/jyn+ 1 (A1O)

where

The cross coupling of the errors given by (A8)-(A11)

gives rise to a matrix formulation, i.e.,

where

(A12)

(A13)

and the four elements of the matrix M. are defined by

(A8)-(Ail).

For convergence, a norm of M., denoted IIM. 11,must be

less than unity [24]. The norm of a matrix quantifies its

magnifying power when used in vector multiplication; a

small matrix norm is guaranteed by having small matrix

elements. For the mixer circuits analyzed here, the lead

inductances of the diodes ensure large values for Z,, and

Zzz, which in turn keeps the size of the matrix elements

down. In addition, the convergence parameters provide

some flexibility.
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Aspects of the Calibration of a Single
Six-Port Using a Load and Offset

Reflection Standards

G. P. RIBLET, MEMBER, IEEE, AND E. R. BERTIL HANSSON

.&tract —In thk contribution some aspects of the calibration of a single

six-port using a load and offset reflection standards are discussed. The

applicabilim of the methods developed is demonstrated by the successful

calibration of several six-ports including one consisting of a directional

coupler plus a symmetrical five-port junction.

I. INTRODUCTION

A LTHOUGH THE THEORY for the calibration of

six-ports using the dual six-port method is well

developed at this time [1], the calibration of these devices

using offset reflection standards is attractive, particularly

in a typical laboratory environment. Problems with the

latter are a) the absence of simple closed form expressions

for the calibration constants [2] and b) insight into what

standards to choose to optimize the calibration over a

given frequency interval. This contribution attempts to

remedy this situation. A third problem of much practical

significance relates to the transferability of the calibration.
It is shown how the calibration constants can be normal-

ized in such a way that a six-port can be recalibrated with a
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good load on the output without the need to go through

a full calibration procedure whenever the device is used in

a cliff erent experimental configuration.

II. CHOICE OF OFFSET STANDARDS

If PR is the power measured by the reference detector

and Pi, i = 1,2,3 the powers measured by the other three

detectors attached to the six-port (see Fig. 1), then the

power ratios Pi/PR can be written

il+2z.lrulc0s(ox, +~u)+x:lru12

‘i’pR=y l+2zpulc0s(oz +ou)+z’[ru[’ ‘

i=l,2,3 (1)

where \r. I is the magnitude and +U the phase of the
reflection coefficient to be measured [3]. The other quanti-

ties are calibration constants of the six-port. The term
Yi, i =1,2,3 can be determined from a measurement of a

very good load or a sliding load on the output. If the

reference coupler has infinite directivity and the six-port is

perfectly matched, then Z will be zero and only terms in

the numerator will appear. In general, these conditions will-

be approximately fulfilled so that Z will be small and the

denominator will be close to one. Let us assume that Z,+=

are known (a procedure is given in the next section for
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